MicroRNA-214 regulates smooth muscle cell differentiation from stem cells by targeting RNA-binding protein QKI

نویسندگان

  • Yutao Wu
  • Zhoubin Li
  • Mei Yang
  • Bing Dai
  • Feng Hu
  • Feng Yang
  • Jianhua Zhu
  • Ting Chen
  • Li Zhang
چکیده

MicroRNA-214(miR-214) has been recently reported to regulate angiogenesis and embryonic stem cells (ESCs) differentiation. However, very little is known about its functional role in vascular smooth muscle cells (VSMCs) differentiation from ESCs. In the present study, we assessed the hypothesis that miR-214 and its target genes play an important role in VSMCs differentiation. Murine ESCs were seeded on collagen-coated flasks and cultured in differentiation medium for 2 to 8 days to allow VSMCs differentiation. miR-214 was significantly upregulated during VSMCs differentiation. miR-214 overexpression and knockdown in differentiating ESCs significantly promoted and inhibited VSMCs -specific genes expression, respectively. Importantly, miR-214 overexpression in ESCs promoted VSMCs differentiation in vivo. Quaking (QKI) was predicted as one of the major targets of miR-214, which was negatively regulated by miR-214. Luciferase assay showed miR-214 substantially inhibited wild type, but not the mutant version of QKI-3-UTR-luciferase activity in differentiating ESCs, further confirming a negative regulation role of miR-214 in QKI gene expression. Mechanistically, our data showed that miR-214 regulated VSMCs gene expression during VSMCs differentiation from ESCs through suppression of QKI. We further demonstrated that QKI down-regulated the expression of SRF, MEF2C and Myocd through transcriptional repression and direct binding to promoters of the SRF, MEF2c and Myocd genes. Taken together, we have uncovered a central role of miR-214 in ESC-VSMC differentiation, and successfully identified QKI as a functional modulating target in miR-214 mediated VSMCs differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quaking Is a Key Regulator of Endothelial Cell Differentiation, Neovascularization, and Angiogenesis

The capability to derive endothelial cell (ECs) from induced pluripotent stem cells (iPSCs) holds huge therapeutic potential for cardiovascular disease. This study elucidates the precise role of the RNA-binding protein Quaking isoform 5 (QKI-5) during EC differentiation from both mouse and human iPSCs (hiPSCs) and dissects how RNA-binding proteins can improve differentiation efficiency toward c...

متن کامل

Quaking, an RNA-binding protein, is a critical regulator of vascular smooth muscle cell phenotype.

RATIONALE RNA-binding proteins are critical post-transcriptional regulators of RNA and can influence pre-mRNA splicing, RNA localization, and stability. The RNA-binding protein Quaking (QKI) is essential for embryonic blood vessel development. However, the role of QKI in the adult vasculature, and in particular in vascular smooth muscle cells (VSMCs), is currently unknown. OBJECTIVE We sought...

متن کامل

Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells.

Polycomb group (PcG) proteins exert essential functions in the most disparate biological processes. The contribution of PcG proteins to cell commitment and differentiation relates to their ability to repress transcription of developmental regulators in embryonic stem (ES) cells and in committed cell lineages, including skeletal muscle cells (SMC). PcG proteins are preferentially removed from tr...

متن کامل

The QKI-6 and QKI-7 RNA Binding Proteins Block Proliferation and Promote Schwann Cell Myelination

BACKGROUND The quaking viable (qk(v)) mice have uncompacted myelin in their central and peripheral nervous system (CNS, PNS). The qk gene encodes 3 major alternatively spliced isoforms that contain unique sequence at their C-terminus dictating their cellular localization. QKI-5 is a nuclear isoform, whereas QKI-6 and QKI-7 are cytoplasmic isoforms. The qk(v) mice harbor an enhancer/promoter del...

متن کامل

MicroRNA-214 Suppresses Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Targeting ATF4

Periodontitis is the main cause of adult tooth loss. Stem cell-based tissue engineering has become a promising therapy for periodontitis treatment. To date, human periodontal ligament stem cells (hPDLSCs) have been shown to be a favorable source for tissue engineering, but modulatory mechanisms of hPDLSCs remain unclear. Approximately 60% of mammalian genes are the targets of over 2000 miRNAs i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017